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A SOLUTION TO AN OPEN PROBLEM ON REVERSE

TRIGONOMETRIC MASJED-JAMEI INEQUALITY

Bhukya Ravi, A. Venkata Lakshmi, and Yogesh J. Bagul*

Abstract. In this short note, we prove an open problem for the
interval (−∞,∞), related to a reverse trigonometric Masjed-Jamei
inequality presented in [2] and establish a new inequality of a similar
kind.

1. Introduction

In 2010, Masjed-Jamei [3] obtained an upper bound for the square of
the inverse tangent function in terms of inverse hyperbolic function. It
is formulated as:

(1.1) (arctan(x))2 ≤ x ln(x+
√

1 + x2)√
1 + x2

holds for all x ∈ (−1, 1). The right term involves the inverse hyperbolic

sine function defined by arcsinh(x) = ln(x+
√

1 + x2). Among the recent
developments, in 2019, Zhu and Malešević [5] extended the domain of
the inequality (1.1) to the whole real line. Precisely, it is stated as

(1.2) (arctan(x))2 ≤ x ln(x+
√

1 + x2)√
1 + x2

holds for all x ∈ (−∞,∞) and the exponent 2 is the best possible.

In 2021, Chesneau, and Bagul [2] obtained the lower bound for the
inverse tangent function involving sine and the inverse hyperbolic sine
function. It is stated that:
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For x ∈ (−π, π), we have

(1.3)
sin(x) ln(x+

√
1 + x2)√

1 + x2
≤ (arctan(x))2

and proposed an open problem stated in the following theorem

Theorem 1.1. For x ∈ (−∞,∞), we have

(1.4)
sin(x) ln(x+

√
1 + x2)√

1 + x2
≤ (arctan(x))2.

The first aim of this paper is to prove Theorem 1.1 and the second
aim is to prove an inequality analogous to (1.4) which is stated in the
following theorem.

Theorem 1.2. For x ∈ (−1, 1), we have

tanx ln(x+
√

1 + x2)√
1 + x2

≤ (arcsinx)2.(1.5)

The inequality (1.5) gives a lower bound for inverse sine function in
terms of tangent and the inverse hyperbolic sine function.

2. Proofs of main results

In order to prove our main results, we need the following auxiliary
results.

Lemma 2.1. For x > 0, we have

sin(x) ≤ 2x− x√
1 + x2

(2.1)

Proof. Let h(x) = 2x− x√
1+x2

− sin(x). On differentiation we obtain

h′(x) = 2 +
x2

(1 + x2)3/2
− 1√

1 + x2
− cos(x)

=
x2

(1 + x2)3/2
+ 1− 1√

1 + x2
+ 1− cos(x) ≥ 0,

Thus h(x) is increasing and h(0) ≤ h(x) implies the inequality (2.1).

Lemma 2.2. If x ∈ (0, 1) then we have

arcsinx > ln(x+
√

1 + x2).(2.2)
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Proof. Suppose k(x) = arcsinx−ln(x+
√

1 + x2). Then differentiation
gives

k′(x) =
1√

1− x2
− 1√

1 + x2
> 0

for x ∈ (0, 1). Therefore k(x) is strictly increasing in (0, 1) and the
inequality (2.2) follows as k(x) > k(0) = 0.

2.1. Proof of the open problem(Theorem 1.1)

Proof. Let us define

g(x) = (arctan(x))2 − sin(x) ln(x+
√

1 + x2)√
1 + x2

We aim to prove that g(x) ≥ 0 for all x ∈ (−∞,∞). Since g(−x) = g(x),
it is enough to prove that g(x) ≥ 0 for all x ∈ (0,∞). Utilizing (2.1) we
obtain

g(x) ≥ (arctan(x))2 +

(
x√

1 + x2
− 2x

)
ln(x+

√
1 + x2)√

1 + x2
.

Define f(x) = (arctan(x))2 +
(

x√
1+x2

− 2x
)

ln(x+
√
1+x2)√

1+x2
. We claim that

f(x) ≥ 0 for all x ∈ (0,∞). It is easy to see that f(0) = 0. On differen-
tiation we obtain,

f ′(x) =
1

(1 + x2)5/2

[
(2 + 2x2 + (x2 − 1)

√
1 + x2)arcsinh(x)

+ (1 + x2)[x(−1 + 2
√

1 + x2) + 2
√

1 + x2 arctan(x)]
]
.

Define H1(x) = 2 + 2x2 + (x2 − 1)
√

1 + x2 and H2(x) = x(−1 +

2
√

1 + x2), then H1(0) = 1 and H2(0) = 0.

H
′
1(x) =

x+ 3x3 + 4x
√

1 + x2√
1 + x2

≥ 0, x ≥ 0.

Which implies that H1(x) is increasing and H1(x) ≥ 1 for all x ≥ 0. So
H2(x) ≥ 0 for all x ≥ 0. Thus, f ′(x) ≥ 0 for all x ∈ (0,∞) implies that
f is increasing and f(x) ≥ f(0) gives the desired result.

2.2. Proof of Theorem 1.2

Proof. Clearly, equality holds at x = 0. And it is enough to prove
inequality (1.5) in (0, 1) due to symmetry of functions involved at both
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sides. Let us first set G(x) =
√

1 + x2 arcsinx − tanx, x ∈ (0, 1). Dif-
ferentiation gives

G′(x) =

√
1 + x2√
1− x2

+
x arcsinx√

1 + x2
− 1

1 + x2

=
1√

1− x2(1 + x2)

(
(1 + x2)3/2 + x

√
1− x4 arcsinx−

√
1− x2

)
=

1√
1− x2(1 + x2)

F (x)

where

F (x) = x
√

1− x4 arcsinx+
(

(1 + x2)3/2 −
√

1− x2
)
> 0.

Thus G′(x) > 0. Hence G(x) is increasing in (0, 1) and G(x) > G(0) = 0
implies √

1 + x2 arcsinx > tanx, x ∈ (0, 1)

or √
1 + x2(arcsinx)2 > tanx arcsinx, x ∈ (0, 1)

Using Lemma 2.2, we get tanx arcsinx > tanx ln(x +
√

1 + x2), x ∈
(0, 1) which then implies the desired inequality (1.5).
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